Indirect Spin Coupling Constants in Fluorine Compounds of Five- and Six-co-ordinate Phosphorus

By H. DREESKAMP* and C. SCHUMANN

(Institut für Physikalische Chemie der Universität, 7 Stuttgart, Germany)

and R. SCHMUTZLER

(Institut für Anorganische Chemie der Technischen Universität, 33 Braunschweig, Germany)

Summary Magnitudes and signs of indirect spin coupling constants relative to ${}^{1}J(CH) > 0$ were investigated by heteronuclear INDOR-technique in the series $Me_{n}PF_{5-n}$ (n = 1, 2, 3) and in $[MePF_{5}]^{-}$ showing that ${}^{1}J(PF_{a}) < 0$, ${}^{1}J(PF_{e}) < 0$, and ${}^{1}J(PC) > 0$.

OF the many factors influencing spin coupling constants the co-ordination number seems to be particularly important.¹ Thus, going from three- to four-co-ordinate phosphorus, both ${}^{1}J(PH)$ and ${}^{1}J(PC)$ increase from relatively small positive or negative values, respectively, to relatively large positive values, 2,3,4d while ${}^{1}J(PF)$ was found to be large and negative for both three- and four-co-ordinate phosphorus.⁴ To supplement the available data with coupling constants for five- and six-co-ordinate phosphorus compounds, the series of methylfluorophosphoranes,⁵ Me_nPF_{5-n} (n = 1, 2, 3), and the anion [MePF₅]⁻⁶ were investigated by heteronuclear INDOR-spectroscopy, using the equipment previously described.^{4d,7}

Spectra of MePF₄ and Me₂PF₃ were recorded at reduced temperatures and low concentration (see Table), in order to slow down intramolecular exchange of axial and equatorial fluorine atoms.⁸ This could not be achieved with MePF₄, hence only averaged couplings ¹J(PF) and ³J(HF) could be observed while ²J(FF) remained undetected. INDOR-spectra of molecules containing ¹³C in natural abundance could only be obtained for Me₃PF₂ and [MePF₅]which could be recorded at normal temperature and relatively high concentrations. Even then, spectra accumulation (Varian C-1024 CAT) over periods of up to three days had to be used.

Data of coupling constants and chemical shifts, relative to the ¹H resonance of Me₄Si in the same magnetic field, are given in the Table. The nuclei perturbed and the coupling constants relative to which a sign determination was made are listed in the second and third columns, respectively.

Assuming ${}^{1}J(CH) > 0, {}^{1}{}^{2}J(PH)$ was found to be negative and ${}^{1}J(PC)$ to be positive in Me₃PF₂ and [MePF₅]⁻. Since there is only a small change of $|{}^{2}J(PH)|$ in all four compounds investigated, a negative sign of ${}^{2}J(PH)$ in MePF₄ and Me₂PF₃ was assumed and, relative to this, signs of the other coupling constants were determined. ${}^{1}J(PF)$ was found to be negative for both axial and equatorial positions. In view of the earlier observation of a negative sign of $^{1}J(PF)^{4}$ and since $|^{1}J(PF)|$ is always large⁹ a negative sign of ${}^{1}J(PF)$ is likely in all cases. The increase of ${}^{1}J(PC)$ from +56.5 Hz in $[Me_4P]^{+3}$ to +128 Hz in Me_3PF_2 is consistent with the assumption of a dominating contact mechanism and sp^3 -character of the four P-orbitals in $[PMe_4]^+$ and nearly sp^2 -character of the three equatorial P-orbitals in Me₃PF₂. The agreement is even more convincing if the s-character of the carbon orbitals making the P-C bond, as deduced from ${}^{1}J(CH)$, is taken into account.³ Going to the six-co-ordinate anion a further increase of ${}^{1}J(PC)$ is observed. This seems to be analogous to the trends observed for ${}^{1}J(CH)$ in the fluoromethane series, $CH_{n}F_{4-n}$.¹⁰ Also, according to Bent's rule¹¹ the s-character of a bond

$MePF_4$	(25%;	25% Me ₄ Si; 50%	CFCl ₃ ; -70°)
$^{1}J(PF)$	-	-967.7 ± 1.0	{F}; 2/(PH)
$^{2}J(\mathrm{PH})$	=	$-20\cdot3\pm0\cdot2$	(), () ()
J(HF)	100	$+7.0\pm0.1$	$\{P\}; {}^{1}J(PF)$
ν(¹ H)	-	1.00000194	
ν(¹⁹ F)	==	0.94089783	
v(³¹ P)		0.40479544	

Me₂PF₃ (5%; 25% Me₄Si; 70% CFCl₃; -40°)

			• •
$J^{1}(PF_{a})^{*}$	==	$-781 \cdot 6 \pm 1 \cdot 0$	{F}; 2/(PH)
$^{1}J(\mathrm{PF}_{e})$		$-976 \cdot 2 \pm 1 \cdot 0$	{F}; ²J(PH)
$^{2}J(\text{PH})$	===	-17.0 ± 0.2	
${}^{2}J(\mathbf{F}_{a}\mathbf{F}_{e})$	==	$-28\cdot1$ \pm 0.5	$\{F\}; {}^{*}/(HF_{a}), {}^{*}/(HF_{a})$
$^{8}J(\mathrm{HF}_{a})$	==	$+12.6\pm0.2$	{P}; 'I(PF), 'I(PF)
$^{3}J(\mathrm{HF}_{e})$	==	$+3.05 \pm 0.1$	$\{P\}; {}^{i}J(PF_{a}), {}^{i}J(PF_{b})$
ν(¹ H)	-	1.00000176	
ν(¹⁹ F _e)		0.94085755	
$v({}^{19}\mathbf{F}_{a})$		0.94093787	
ν(⁸¹ P)	=	0.40480960	

Me₃PF₂[†] (5%; 25% Me₄Si; 70% CFCl₃)

${}^{1}J(CH)$ ${}^{1}J(PC)$ ${}^{1}J(PF)$ ${}^{2}J(PH)$ ${}^{2}J(CF)$ ${}^{3}J(HF)$		+1 +1 +1	129·3 128·1 552·2 7·54 <u>-</u> - 30·9 2·17 <u>-</u>	$\begin{array}{c} \pm \ 0 \cdot 1 \\ \pm \ 0 \cdot 0 \\ \pm \ 1 \cdot 0 \\ \pm \ 0 \cdot 0 \end{array}$	l 5)) 5 5 5	{P {F {C} {C} {P}	}; ¹ J(C }; ² J(P ; ¹ J(P ; ³ J(H ; ¹ J(P	H) H) C) F)
ν(¹ H) ν(¹³ C) ν(¹⁹ F) ν(⁸¹ P)		1.0 0.2 0.9 0.4	00000] 5145 4093 0480(161 501 578 052				
* FF.	refer	to	axial	and	equa	torial	fluori	nes

* F_a , F_c refer to axial and equatorial fluorines within the trigonal bipyramid.

 \dagger Coupling constants involving $^{13}\mathrm{C}$ were determined on a sample containing 35% $\mathrm{Me_3PF_2}$ and 65% $\mathrm{Me_4Si}.$

[MePF₅] ⁻ 40% M	{ <i>ca</i> eCN }	. 40% [MePF(N]	$Me_{2})_{2}]^{+}[MePF_{5}]^{-}; 20\% C_{6}H_{6};$
¹ /(CH)	-	+124.6 + 0.5	
¹J(PC)		+262 + 3	$\{P\}; {}^{1}I(CH)$
$^{1}J(PF_{a})$	==	$-675\cdot\overline{7}\pm1\cdot0$	by analogy with Me,PF,
¹ J(PF)	==	$-832 \cdot 4 \pm 1 \cdot 0$	{F}; 2/(PH)
$^{2}J(PH)$	==	-20.5 ± 0.5	$\{C\}; {}^{1}J(PC)$
${}^{2}J(\mathbf{F}_{a}\mathbf{F}_{e})$	==	-35.9 ± 1.0	by analogy with Me ₂ PF ₃
${}^{3}J(\mathrm{HF}_{a})$	==	0.0 ± 0.5	
³J(HF _e)		$+8.9\pm0.5$	$\{P\}; {}^{1}J(PF)$
/1TT)		1 00000115	
V(-11)		1.0000115	
v(13C)	==	0.25145761	
ν(¹⁹ F)	==	0.94089622	
ν(⁸¹ Ρ)	==	0.40475690	

to an electropositive substituent increases at the expense of *s*-character in bonds to electronegative groups. Since in $[MePF_5]^-$ one methyl group competes with five highly

electronegative fluorine atoms this could well account for the large value of ${}^{1}J(PC)$.

Assuming the same mechanism to be responsible for ${}^{1}J(PC)$ and ${}^{2}J(PH)$ a proportionality between these two quantities might have been expected if the transmission of spin polarisation between P and C or P and H is independent

of the molecule.¹² This is clearly not the case though $|^{2}J(PH)|$ increases as $^{1}J(PC)$ increases.

The vicinal coupling constants ${}^{3}J(FH)$ were found to be positive as has recently been shown⁷ for all reduced vicinal coupling constants ${}^{3}K(XH)$ in ethyl- and vinyl-fragments.

(Received, April 13th, 1970; Com. 527.)

¹ C. J. Jameson and H. S. Gutowsky, J. Chem. Phys., 1969, 51, 2790. ² W. McFarlane, Proc. Roy. Soc., 1968, A306, 185.

 ³ H. Elser and H. Dreeskamp, Ber. Bunsengesellschaft Phys. Chem., 1969, 73, 619.
 ⁴ (a) R. B. Johannesen, J. Chem. Phys., 1967, 47, 3088; (b) R. R. Dean and W. McFarlane, Chem. Comm., 1967, 840; (c) S. L. Manatt D. D. Elleman, A. H. Cowley, and A. B. Burg, J. Amer. Chem. Soc., 1967, 89, 4544; (d) C. Schumann, H. Dreeskamp, and O. Stelzer

Chem. Comm., 1970, 619. ⁶ (a) (MePF₄, Me₂PF₃) R. Schmutzler, Inorg. Chem., 1964, 3, 410, 421; (b) (Me₃PF₂) A. J. Downs and R. Schmutzler, Spectrochim. Acta, 1967, 23A, 681.

(a) R. Schmutzler, J. Amer. Chem. Soc., 1964, 86, 4500; (b) G. S. Reddy and R. Schmutzler, Inorg. Chem., 1966, 5, 164.

^(a) (a) R. Schmutzler, J. Amer. Chem. Soc., 1964, 50, 4506, (b) G. S. Keddy and R. Schmutzler, Thorg. Chem., 1960, 5, 164.
^(a) (A. Schmutzler, Angew. Chem., 1965, 77, 530; (b) R. Schmutzler, in "Halogen Chemistry," ed. V. Gutmann, Academic Press, London and New York, 1967, p. 31 ff; (c) J. Heller, Chimia, 1969, 23, 351.
^(a) G. Mavel, Progr. N.M.R. Spectroscopy, 1966, 1, 280.
^(b) E. Sackmann, Z. phys. Chem. (Frankfurt), 1962, 34, 283.
^(a) H. A. Bent, Chem. Rev., 1961, 61, 275; Canad. J. Chem., 1960, 38, 1235.

¹² H. Dreeskamp, Z. Naturforsch., 1964, 19a, 139.